LJMS Math Options Presentation 2024

Grade 7 Mathematics Course Options

Mathematics 7
$7^{\text {th }}$ grade standards

Mathematics 7 Honors

Pre-Algebra standards + extensions
 (Open access)

Algebra I Honors criteria:

- Advanced Math in $6^{\text {th }}$ grade,
- $500+$ on $7^{\text {th }}$ grade SOL, and
- 91 st percentile on Iowa Algebra Aptitude Test
(Algebra I is a high school credit course.)

Math Course Sequence

Mathematics Course Sequence

Grade 7 Mathematics

- Math 7 - a curriculum which considers the foundations of Algebra and emphasizes the concept of and operations with rational numbers. The content covers the Math 7 SOLs.
- Math 7 Honors - A more rigorous approach to a pre-algebra curriculum with an emphasis on problem solving. It is correlated to the 8 th grade Math SOLs, but contains extensions and enrichment opportunities. Prepares students for Algebra I Honors or Algebra 1 in grade 8.
- Algebra I Honors - A fast-paced approach to Algebra I, a high school credit course, which includes many extensions to the Algebra I SOLs.

Current Advanced Math 6 Students: Move to Math 7 Honors or Algebra 1 Honors?

Mathematics Course Sequence

Algebra 1 Honors Criteria (Grade 7)

- 91st percentile or higher on the IAAT
- Pass Advanced on the Math 7 SOL (500 +)
- Completion of Advanced Math 6
- All students are placed in Math 7 Honors until all scores and final marks are received
- Placement decisions occur over the summer - Parents notified in Mid-July if their child will be placed in Algebra 1 Honors.

Current Math 6 Students Move to Math 7 or Math 7 Honors?

Mathematics Course Sequence

7th grade Math Information

Math 7 - On Grade Level - Prepares students for Pre-Algebra or Algebra I - Takes Math 7 SOL	Math 7 HN - Pre-Algebra (aka Math 8) standards + extensions - Prepares students for Algebra I or Algebra I Honors - Takes Pre-Algebra SOL (8th grade math)	Algebra I HN - Criteria include (1) taking advanced math in $6^{\text {th }}$ grade; (2) a score of 91% on the IAAT, and (3) scoring Passed Advanced on the Math 7 SOL - Is a high school credit course - Students take Geometry Honors as $8^{\text {th }}$ graders - Takes Algebra SOL

Who should consider moving from Math 6 to Math 7 HN?

- Student who has the goal of taking Alg 1 in 8th grade
- Alg 1 Honors in 8 th grade is needed to apply to TJ
- Student who is performing well in Math 6 and has passed or shown growth trends in previous Math SOLs
- Student whose 6th grade math teacher recommends Math 7 HN
- Student who is motivated and willing to work hard

Why take Math 7 HN and Alg 1 Honors?

- Content is more closely aligned with the Algebra content
- Opportunity to take an honors course which is not a high school credit course
- Supports are in place to support students moving from Math 6 to Math 7 Honors including:
- Advisory support class
- Summer Bridge program
- Earlier participation in Algebra allows students additional time to take higher level math courses
- Increases access to college and career opportunities, particularly in STEM fields
- May allow for more academy classes opportunities in high school
- Math advisory support class for those who need it

Algebra Readiness Skills included in Math 7 Honors (not in Math 7):

- Combining Like Terms
- The Distributive Property
- Solving Multi-step Equations
- Solving Multi-step Inequalities
- Graphing Linear Equations
- Literal Equations
- Simplifying Radicals

- Laws of Exponents
- Line of Best Fit

Comparison of 3 Levels

$$
\begin{gathered}
\underline{\text { Math } 7} \\
\frac{h}{2}+5=27
\end{gathered}
$$

Answer has one solution

$$
(8-7)^{2} \cdot 3+8 \div(-2)
$$

Students learn Order of Operations in Math 7 that include negative numbers

Math 7 Honors
$2(4 x-3)-8=4+2 x$
Answer has one solution

$$
\frac{-3\left[2^{2}+(3 \cdot 6)\right.}{\sqrt{25}+(12 \div-2)}
$$

Order of Operations with negative numbers is assumed prior knowledge, students start incorporating square roots, cubes, absolute value, and nesting

Algebra Honors

$3(x+1)+1+2 x=2(2 x+2)+x$
Answer has infinite
solutions

$$
\frac{\sqrt[3]{-216} \cdot[10+(\sqrt{16}-22)]^{3}}{8^{2}}
$$

*Math 7 and PreAlgebra is assumed prior knowledge; students begin incorporating positive and negative cube roots

